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An extended lattice Boltzmann model is developed for simulating the convection–
diffusion phenomena associated with solid–liquid phase transition processes. Mac-
roscopic hydrodynamic variables are obtained through the solution of an evolution
equation of a single-particle density distribution function, whereas, the macroscopic
temperature field is obtained by solving auxiliary scalar transport equations. The
novelty of the present methodology lies in the formulation of an enthalpy-based
approach for phase-change modelling within a lattice-Boltzmann framework, in a
thermodynamically consistent manner. Thermofluidic aspects of phase transition are
handled by means of a modified enthalpy–porosity formulation, in conjunction with
an appropriate enthalpy-updating closure scheme. Lattice-Boltzmann simulations of
melting of pure gallium in a rectangular enclosure, Rayleigh–Bénard convection in the
presence of directional solidification in a top-cooled cavity, and crystal growth during
solidification of an undercooled melt agree well with the numerical and experimental
results available in the literature, and provide substantial evidence regarding the
upscaled computational economy provided by the present methodology.

1. Introduction
Numerical modelling of solid–liquid phase–transition problems offers a challenge

to the research community, primarily attributable to a dynamic evolution of the
interfaces and the associated physical, mathematical, as well as computational
complexities. As such, issues of resolving multiple physical scales and morphologically
complicated deforming domains tax existing computational resources and methods
to stringent limits, while executing most of the established strategies of solid–liquid
phase-transformation modelling, in practice.

Early efforts in melting/solidification modelling initiated with a moving/deforming
grid approach (Rubinsky & Cravahlo 1981; Voller & Cross 1981, 1983; Weaver &
Viskanta 1986; Askar 1987), in which the solid–liquid interface must be tracked
separately, with additional constraints in the form of interfacial boundary conditions
to be imposed on the system of equations. Although this approach worked efficiently
for the planar front solidification of pure substances, serious complications arose for
solidification problems with more complicated interfacial topologies. Because of these
limitations associated with the moving-grid method, the single-domain continuum
formulation subsequently emerged as a more attractive proposition, based on the
initial pioneering efforts of Bennon & Incropera (1987), which were extended by
Voller & Prakash (1987). This method eliminates the need for an explicit tracking of
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the solidification fronts, by modelling the entire problem domain with a single set of
volume-averaged continuum conservation equations.

Although simulation strategies have become somewhat standardized over the past
few decades, serious challenges still exist with regard to the treatment of disparate
and physically interconnected length scales characterizing the entire sequence of
transport processes. To overcome such difficulties, phase-field models of solidification
have been developed and proposed by several workers (Harrowell & Oxtoby 1987;
Mikheev & Chernov 1991; Khachaturyan 1996; Beckermann et al. 1999; Kim et al.
1999; Tong et al. 2001). The advantage of the phase-field models is that computational
difficulties associated with front tracking are eliminated by introducing an auxiliary-
order parameter (the so-called ‘phase field’) that couples with the evolution of
the thermal field. The dynamics of the phase field are designed to follow the
evolving solidification front, thereby eliminating the need for any explicit front
tracking.

The lattice-Boltzmann (LB) method (Chen et al. 1991; Chen, Chen & Matthaeus
1992; Qian, D’Humieres & Lallemand 1992; Succi 2001) has emerged to offer huge
potential for solving fluid dynamic problems involving morphological development
of complicated phase boundaries (Chen & Doolen 1998; Kendon et al. 2001;
Sankaranarayanan et al. 2002; Barrios et al. 2005). The LB method evolved from a
Boolean fluid model (Frish, Hasslacher & Pomeau 1986) known as the lattice gas
automata (LGA), which simulates fluid motion through particles moving and colliding
in a regular lattice. A distinct advantage of this approach, so far as modelling of solid–
liquid phase transition problems is concerned, is that the LB method is fundamentally
based on microscopic particle models and mesoscopic kinetic equations, which means
that micro and meso-scale physics of phase transitions can be elegantly bonded
together. Another important advantage, in comparison to the classical continuum
based formulation, is that it does not require an immediate explicit calculation of fluid
pressure, leading to time-efficient computational simulations. Further, LB models are
inherently parallelizable, since the non-localities can be restricted to nearest-neighbour
interactions alone, and the only additional computations involved are equivalent to
that of a mere streaming step, which renders them suitable to address phase-change
processes over large-scale computational domains.

Recognizing some of the above-mentioned natural advantages, De Fabritiis et al.
(1998) developed a thermal LB model for solving liquid–solid phase transition by
employing two types of quasi-particles for liquid and solid phases, respectively. Miller,
Succi & Manutti (2001) developed a simple LB model for liquid–solid phase-change
processes, using a single type of quasi-particle and a phase-field approach. Further
work proceeded along similar lines (Miller & Schroder 2001; Miller 2001; Miller &
Succi 2002; Miller, Rasin & Pimental 2004), with the phase-field model acting as a
pivotal basis for determining the evolution of respective phase fractions.

Despite possessing a strong fundamental basis, the phase-field model has been
found to suffer from certain stringent computational constraints, which originate
from the effective phase-field simulation, a mapping between critical characteristics
of the phase-field model and the sharp-interface equations, requiring asymptotic
expansions in some parameters involving the interface width. Consequently, the phase-
field model must use limitingly thin grid spacings, in order to resolve the interfacial
region, in principle. Even in the absence of convection, the system of equations
that must be solved is strongly nonlinear and coupled in nature, which requires
a virtually sharp interface of thickness of the order of few inter-atomic distances
to be spread over several grid points. This makes the application of the phase-field
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method to solidification problems with small undercooling effects a potentially difficult
proposition. For typical microstructures grown at a dimensionless undercooling of
0.1 or less, the ratio of the system size to the minimum grid spacing can be typically
greater than 217 or more (Palle & Dantzig 1996), unless adaptive mesh refinement
strategies involving computationally involved data structures are used, adding further
complications to the overall solution algorithm. This is probably the main reason
why phase-field based LB methods, introduced early in the present decade, are not
effective in practice, for modelling solid–liquid phase-transition problems.

A fixed-grid enthalpy-based approach may turn out to be a more suitable alternative
proposition. In the enthalpy-based methodology, morphological evolution of the
phase front can be captured in an implicit manner, through a dynamic update of the
pertinent liquid fraction. This update is reflected in the energy conservation equation,
as either a heat source or a heat sink. A distinct advantage of this arrangement
is that no explicit conditions for energy conservation at the solid/liquid interface
need be accounted for (Brent, Voller & Reid 1988). Further, since this approach
does not necessitate explicit interface tracking, it is well-suited for treating the
continuous transitions between solid and liquid phases, as well as evolution of
latent energy over a finite temperature range. Most importantly, the grid-refinement
requirements near the interfacial region are not as stringent as in the phase-field
method, thereby greatly relaxing the computational constraints. This motivates the
development of an alternative LB approach, which potentially retains simplicity,
accuracy and parallelizability of the classical LB method and at the same time
overcomes most of the practical computational constraints imposed by the phase-
field based mathematical modelling approaches.

In this paper, an enthalpy-based hybrid LB technique is proposed for simulating
transport phenomena during solid–liquid phase-transition processes, by first
developing an appropriate LB method for non-isothermal systems, and a subsequent
coupling of the same with a fixed-grid enthalpy–porosity approach (Brent et al.
1988). The macroscopic density and velocity fields are simulated using a single
particle density distribution function, while the macroscopic temperature field is
obtained from coupled scalar transport equations. The newly developed method is
subsequently applied to several test cases reported in benchmark studies of solid–
liquid phase-change modelling, such as problems involving melting of pure gallium
in a rectangular cavity, Rayleigh–Bénard convection during directional solidification
of a freezing substance kept in a top-cooled enclosure, and crystal growth during
equiaxial solidification of an undercooled melt.

2. Continuum conservation equations
As mentioned earlier, in a classical multiple-domain solidification modelling

approach, independent conservation equations for each phase are employed, and
are coupled with appropriate boundary conditions at the interfaces. However, such
multiple-region solutions require the existence of discrete interfaces between the
respective phases, and are generally limited to pure substances. In fact, a major
difficulty with regard to their implementation is associated with the tracking of the
phase interfaces (which are generally unknown functions of space and time). The
need for moving numerical grids and/or coordinate mapping procedures complicates
the application of this technique further, and generally, simplifying assumptions
regarding the geometric regularity of the interfaces are made. In fact, for topologically
complicated interfaces, it would be virtually impossible to track a morphologically
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complex zone in a moving/deforming-grid framework. In these situations, a more
convenient approach can be a fixed-grid enthalpy-based methodology, in which the
transport equations for individual phases are volume-averaged to come up with
equivalent single-phase conservation equations, which are valid over the entire domain,
irrespective of the constituent phases that are locally present. Further, the interface
need not be tracked explicitly, and evolves as a consequence of the solution procedure,
by itself. For that purpose, a separate equation for evolution of the liquid fraction
is solved, in conjunction with the above set of conservation equations, in order
to specify implicitly and update the interfacial locations with respect to space and
time. Because of such elegance associated with interfacial modelling in complex
solidification problems, a single-domain paradigm (Voller, Swaminathan & Thomas
1990) is employed for the mathematical model discussed in this study.

The equivalent single-phase volume-averaged continuum conservation equations
(Brent et al. 1988), appropriate for thermo-fluidic transport in the presence of
melting/solidification (assuming a Newtonian, laminar and incompressible flow), can
be described as follows:

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇p + ∇ · (µ∇u) + ρG + ρS, (2.2)

∂(ρCpT )

∂t
+ ∇ · (ρCpuT ) = ∇ · (kT ∇T ) + q̇, (2.3)

where ρ, u, T and p are the density, velocity, temperature and pressure, respectively.
In the above equations, µ, Cp and kT , respectively, are the dynamic viscosity, specific
heat and thermal conductivity of the thermodynamic system under consideration. In
(2.2), G is an external body force per unit mass, originating out of density gradients
prevailing in the domain. For the present model, the above force can be described as:
G = gβ(T − Tref), assuming the Boussinesq approximation to be valid, where g is the
acceleration due to gravity, β is the volumetric thermal expansion coefficient, and Tref

is a reference temperature. The term S, appearing in (2.2), represents an equivalent
frictional resistance force per unit mass, which originates from the consideration
that the morphology of the phase-changing domain can be treated as an equivalent
porous medium that offers a frictional resistance towards fluid flow in that region.
Mathematically, this can be represented as

S = −R · u = −(µ/ρ)K−1 · u (2.4)

where R represents an equivalent resistance tensor and K is the permeability tensor.
Components of the tensor K depend on the specific morphology of the phase-changing
domain, for which any appropriate formulation for flow through a porous medium
can be effectively invoked. The primary focus of the present study is not to explore
different approaches of porous medium modelling in this regard, but to develop an
LB method, based on any chosen porous medium model that is consistent with solid–
liquid phase-change morphology. A common approach followed in the literature is to
adopt the Darcy model (or some of its variants) for flow through a porous medium,
in association with the Cozeny–Kármán equation (Voller & Prakash 1987), as

µK−1 = κ

[
(1 − fl)

2

f 3
l + b

]
, (2.5)



Modelling solid–liquid phase transition 159

where κ is a morphological constant and b is a computational constant introduced
to avoid division by zero. Further, fl is the liquid fraction, given as fl = �H/L,
where L is the latent heat of phase change and �H is the latent enthalpy of a
computational cell undergoing phase change. In (2.5), the term fl is considered to
mimic an equivalent ‘porosity’ of the cells undergoing phase transition, as for the
enthalpy–porosity formulation (Voller & Prakash 1987). This formulation effectively
ensures that in phase-changing cells, the porous medium resistance term in (2.2)
dominates over the transient, convective and diffusive effects originating out of
molecular interaction mechanisms, thereby forcing the velocity field to imitate the
Cozeny–Kármán law. On the other hand, in totally solid elements (fl =0), a large
magnitude of the porous medium resistance term forces any velocity predictions
effectively to zero. In a fully liquid element (fl =1), however, this term has no
consequence, and the usual form of the Navier–Stokes equation can be retrieved.
In essence, it can be summarized that the term, S, effectively controls the degree of
penetration of the convective field into the interdendritic region.

The latent-heat evolution is accounted for by introducing a source term in the
macroscopic energy conservation equation (second term on the right-hand side of
(2.3)) as

q̇ = −
[
∂(ρ�H )

∂t
+ ∇ · (ρu�H )

]
. (2.6a)

For pure material phase change, the term ∇ · (ρ u�H ) vanishes and the source term
becomes

q̇ = −∂(ρ�H )

∂t
. (2.6b)

3. Hybrid lattice-Boltzmann method (LBM) for a phase-changing system
The LBM essentially uses the particle velocity distribution function (fi(x, t)) as the

primary statistical tool, which quantifies the (real-numbered) probability to observe
a pseudo-fluid particle with discrete velocity ei at lattice node x, corresponding to
a time, t. The particle-velocity distribution function is defined for particles moving
synchronously along the nodes of a discrete regular spatial lattice. The subscripts
i = 0, . . . , m of the velocity vectors indicate their discrete lattice directions on the
chosen grid. The fluid particles can collide with each other, as they move under
applied forces. In the LBM, the temporal evolution of the particle velocity distribution
function, without the influence of any body forces, satisfies a discretized evolution
equation of the form:

fi(x + ei�t, t + �t) − fi(x, t) = �tΩi, i ∈ [0, n], (3.1)

where �t is the lattice time step. The left-hand side of (3.1), in effect, represents
free propagation of the particle packets along the lattice links. In the presence of
a body force, Fi (Martys, Shan & Chen 1998), as an additional external source of
momentum, (3.1) is modified to the following form:

fi(x + ei�t, t + �t) − fi(x, t) = �tΩi + �t Fi , i ∈ [1, n]. (3.2)

In (3.1) and (3.2), the symbol Ωi represents a collision operator. In general, the
collision term appearing in (3.2) may be linearized, by assuming that there is always
a local equilibrium particle distribution, f eq , which depends only on the locally
conserved mass and momentum density. A first-order approximation for the collision
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operator, accordingly, leads to the following expression:

Ω∗
i (fi(x, t)) = Ω∗

i

(
f

eq
i (x, t)

)
+ Ω∗

i

(
fi(x, t) − f

eq
i (x, t)

)
. (3.3)

Since Ωi now only acts on the departure from equilibrium, the first term on the
right-hand side of (3.3) vanishes. A convenient formulation for the remainder, used
by most current versions of the LB automaton, including the present study, assumes
the form of a single-step relaxation, in accordance with the Bhatnagher–Gross–Krook
(BGK) approximation (Bhatnagar, Gross & Krook 1954), as follows:

Ωi = −1

τ

(
fi(x, t) − f

eq
i (x, t)

)
, (3.4)

In (3.4), the relaxation time, τ , is a parameter which quantifies the rate of
change towards local equilibrium for incompressible isothermal materials. The BGK
relaxation yields maximal local randomization, as particle distributions relax at the
same rate, ω =1/τ , towards their corresponding equilibrium value. As was first pointed
out by Qian et al. (1992), the relaxation rate must obey the constraint 0<ω < 2, for
the method to be stable and for the particle density and viscosity to be positive.
For non-isothermal flows or fluids with variable density, the relaxation time (τ ∗) may
deviate from a constant according to the following relationship:

τ ∗ = 1
2

+
1

ξ (x, t, T )

(
τ − 1

2

)
, (3.5)

where T is the temperature, and ξ (x, t, T ) is the local particle density (which can be
calculated as the local sum over the particle-velocity distribution, according to the
relationship)

ξ (x, t, T ) =

n∑
i=0

fi(x, t, T ),

resulting in

ν = c2
s �t

(
τ ∗ − 1

2

)
, (3.6)

where ν is the kinematic viscosity, and cs = 1/
√

3 is the lattice sound speed.
Regarding the solution for the evolution of the thermal field, it is noted here that

in spite of its success in solving various challenging problems involving isothermal
fluids, the LBM has not been successful in reliably handling strongly-coupled and
complicated thermal problems over a considerable range of the operating parameters,
despite there being continuous work in this area (Succi 2001). As a consequence, the
success of the thermal LB equation has been limited, in the sense that it is not yet
as competitive as the athermal lattice Boltzmann equation, and it cannot perform
as well as traditional CFD methods in many aspects. The difficulties encountered
in the thermal LBM are primarily associated with numerical instabilities (Zhang &
Chen 2003), difficulties in changing the Prandtl-number value from unity (Chatterjee &
Chakraborty 2005, 2006, 2007), and limitations in dealing with a restricted temperature
range (unless significantly more speeds are added). Although there have been elaborate
discussions on the numerical instability in the thermal LB schemes, so far the issue has
by no means been resolved. In this context, it can also be noted that a primary defect in
the existing energy-conserving thermal LB models is the coupling between the energy
and shear modes of the linearized LB evolution operator. Such a spurious coupling
essentially violates the rotational symmetry (isotropy), and hence, is macroscopically
forbidden. Further, employing a full set of separate distribution functions to simulate
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a passive scalar (such as temperature) is too cumbersome, even though this numerical
inefficiency can be improved by using a redundant degree of freedom in some LB
models.

As an alternative to the classical thermal LB models, hybrid thermal LB methods
have been proposed, by virtue of which the flow simulation is accomplished by
using the isothermal LBM, while the temperature field is solved by using auxiliary
scalar transport equations (Bartoloni et al. 1993; Shan 1997; Lallemand & Luo
2003; Zhang & Chen 2003; Mezrhab, Bouzidi & Lallemand 2004). For improved
numerical stabilities, multiple-relaxation-time (MRT) models have also been suggested
(Lallemand & Luo 2003), as opposed to the simple BGK approximation.

In the present study, a thermodynamically consistent and simplistic LB approach
is essentially adopted and combined with a computationally efficient phase-front-
capturing methodology. Accordingly, the thermal-field and phase-fraction distribu-
tions are obtained from the numerical solution of auxiliary scalar-transport equations,
instead of appealing to separate internal energy density distribution functions.
However, special considerations are invoked, so as to ensure that the velocity and
pressure fields evolve in a thermodynamically consistent manner; a suitable coupling
between the athermal and thermal modules of the numerical scheme is established,
through the introduction of an appropriate ‘interaction’ body-force. The key issue here
is to ensure an efficient formalism of energy evolution, while maintaining the overall
conservation, by giving due considerations to the particle-interaction contribution of
the total energy, which is a function of the relative positions between the particles.
Although the particle-interaction mechanisms may be neglected for ideal gases, they
must be accounted for in non-ideal systems, in a thermodynamically consistent
manner. This, in essence, can be implemented by introducing a ‘thermodynamic’ body
force, in the form of

Fint (x, t) = −∇V (x, t), (3.7)

where V (x, t) is an interaction potential, defined as follows (Shan & Chen 1993):

V (x, x ′) = Gσσ̄ (x, x ′)ψσ (x)ψσ̄ (x ′). (3.8a)

Here, Gσσ̄ (x, x ′) is a Green’s function, defined as

Gσσ̄ (x − x ′) =

{
0, |x − x ′| > �x,

χσσ̄ |x − x ′| = �x,
(3.8b)

where �x is the lattice constant, and the parameter χσσ̄ controls the strength and
sense of the interaction potential between the phases σ and σ̄ . The parameter ψσ

plays an important role in determining the effective number density for the phase, σ ,
in the system. The potential function, as introduced in (3.8), effectively incorporates
long-range attractive or repulsive forces, as a function of number density of the
constituents σ and σ̄ . Because in an LBM, particles reside on lattice sites with fixed
inter-particle distances, the number density on each site is an implicit indicator of the
average distance between particles. The potential, being proportional to the products
of local ‘effective masses’ (ψσ , ψσ̄ ), essentially dictates the momentum change due to
large-range forces between a particle located at the site x and its nearest neighbours.
An explicit form of the potential function has been derived in Shan & Chen (1993),
as

V =
b�x2

2D
χψ2, (3.9)
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where χ = χ11, for a single-component fluid, b represents the discrete number of
spatial translation vectors constituting the vector basis of the distribution function,
and D is the dimensionality. The above formalism, in essence, recovers an equation
of state in the following form (Shan & Chen 1993):

p =
�x2

D

[
(1 − d0)ρ +

b

2
χψ2(ρ)

]
, (3.10)

where d0 is a measure of the compressibility of the fluid system under concern.
Thermodynamic phase transitions are expected to occur if p does not monotonically
increase with ρ, which is possible if χ (which is related to temperature) is sufficiently
negative, monotonically increasing and yet, a bounded function of ρ. The function ψ

and the parameter d0 are chosen in accordance with the guidelines outlined in Shan
& Chen (1993), and the pertinent details are not repeated here. The function ψ , for
instance, can be chosen in the following form:

ψ = ρ0

[
1 − exp

(
−ρ

ρ0

)]
, (3.11)

in order to represent long-range inter-particle forces, with a philosophy similar to the
basic postulates introduced towards development of many of the non-ideal equations
of state (such as, the van der Waals equation).

Based on the solution of the evolution equation for particle-density distribution, the
basic hydrodynamic quantities, such as number density and velocity can be obtained
through a straight-forward moment summation, as

ρ(x, t) =
∑

i

fi(x, t), (3.12a)

ρu(x, t) =
∑

i

eifi(x, t) +
�t

2

∑
i

Fi , (3.12b)

where the body force F incorporates a combined contribution from the buoyancy
force (G), porous medium resistance (S) and the interaction force (Fint ).

For discretization of the velocity space (Shan & He 1998), a D2Q9 model is
employed, which is characterized with two-dimensional sub-lattices (equivalent to the
number of independent speeds) and 9 spatial translation vectors constituting the
vector basis of the distribution function. The discrete velocities for the model can be
described as follows:

ei =

⎧⎨
⎩

0, i = 0, 4/9
(cos[(i − 1)π/2], sin[(i − 1)π/2])c, i = 1, 2, 3, 4, 1/9√

2(cos[(i − 5)π/2 + π/4], sin[(i − 5)π/2 + π/4])c, i = 5, 6, 7, 8, 1/36

⎫⎬
⎭= wi,

(3.13)

where c(=�x/�t) is the characteristic speed. The physical space x is discretized
into a regular lattice such that ei�t is in conformity with the distance between two
neighbouring grid points. In an incompressible flow limit, the density fluctuations are
small (∼M2, M being the Mach number) (He, Luo & Dembo 1997), and accordingly
the equilibrium distribution function becomes (Guo, Zheng & Shi 2002)

f
eq
i = wiρ

[
1 +

ei · u
c2
s

+
uu:

(
eiei − c2

s I)

2c4
s

]
. (3.14)
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Analogously, the forcing parameter, Fi , can be written as

Fi = ωi

(
1 − 1

2τ

)[
ei − u

c2
s

+
(ei · u)ei

c4
s

]
· {ρ(G + S) + Fint}. (3.15)

To satisfy the conservation of mass up to second order in the Chapman–Enskog limit,
the forcing is executed in two steps, with one half of the forcing being implemented
before the collision step and the remaining half thereafter.

It is important to note here that the numerical stability of the LBM mentioned as
above depends on several parameters, including the Mach number, the relaxation time,
the Courant–Friedrichs–Levy (CFL) number (CFL =�t |ei |/�x) and the strength
of the external force field. In general, owing to explicit Euler-forward-time integration,
the source strength must obey a stability restriction in the form (Melchionna & Succi
2004):

|δfi |
fi

∼ |F|�x
min

c2
s

� 1, (3.16)

where �xmin represents the minimum grid size of the computational mesh.

4. Solution of the temperature field and phase fraction evolution
In the present study, the spatial and temporal evolution of temperature is solved

from a supplemental energy transport equation, (2.3), in accordance with a control-
volume-based fully implicit finite-difference method (Patankar 1980). The resultant
discretized equation takes the following form:

aP TP =
∑

anbTnb + b + a0
P T 0

P −
(
�HP − �H 0

P

)
�t

�∀, (4.1)

where �∀ represents the volume of a computational cell (control volume) having a
central nodal point P , and the subscript ‘nb’ represents the neighbouring grid points.
The superscript ‘0’ represents values obtained at the previous time step. The above
represents a system of linear algebraic equations of the same size as the number of
discrete nodes. This system is numerically solved by employing a line by line tri-
diagonal matrix algorithm (TDMA). Moreover, for a physically consistent solution
of the above set of equations, it must be ensured that thermodynamically consistent
estimates of the nodal latent heat (�HP ) are effectively embedded into the solution
procedure itself. Although, no explicit governing differential equation is separately
available for prescribing the evolution of �H in this context, a thermodynamically
consistent estimate of the same can be obtained by deriving a separate equation for
evolution of the nodal latent enthalpy, so as to implicitly specify and update the
interfacial locations with respect to space and time. To achieve this purpose, dynamic
evolution/absorption of latent heat is accounted for by a continuous updating of
nodal latent enthalpy values of each computational cell, consistent with the prevailing
temperature field. In a physical sense, such an updating attempts to neutralize
the difference in the nodal temperature predicted from the energy equation and
that dictated by the phase-change considerations. This update is reflected in the
energy conservation equation, either as a heat source or as a heat sink, leading to
a thermodynamically consistent solution of the system of conservation equations.
For a hybrid coupling between the D2Q9 model and the finite-volume stencil, the
following polynomials are employed to expand the temperature field in the two-
dimensional space for the purpose of profile approximation: φ0 = 1, φ1 = x, φ2 = y,
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φ3 = (x2 − y2), φ4 = xy, φ5 = (x2 + y2), φ6 = x(x2 − y2), φ7 = y(x2 − y2), φ8 = (x2 − y2)2;
so that T (x, y) =

∑
i aiφi(x, y). In the bulk fluid/solid domain, the coefficients ai are

determined by enforcing T (xj , yj ) =
∑

i aiφi(xj , yj ), such that (xj , yj ) = (0, 0), (±1, 0),
(0, ±1) and (±1, ±1).

In order to derive a generalized formalism for nodal latent heat updating, it is
noted from (4.1) that the ratio of coefficients of sensible enthalpy (hP =CP TP ) and
latent enthalpy (�HP ) turns out to be of the order of aP /a0

P , where a0
P = ρCP �∀/�t .

Further, on convergence, we must have: hn+1
P = hn

P and �Hn+1
P = �Hn

P , which implies

hn+1
P +

a0
P

aP

�Hn+1
P = hn

P +
a0

P

aP

�Hn
P . (4.2a)

The above, on rearrangement, yields,

�Hn+1
P = �Hn

P +
aP

a0
P

(
hn

P − hn+1
P

)
. (4.2b)

Since hn+1
P is not known a priori, an iterative estimate of the same must be obtained,

consistent with the thermodynamics and kinetics of phase change. A physical basis
of (4.2b) can be appreciated by referring to the numerical simulation of the plane-
front solidification of a pure material, for example, in which the temperature of a
solidifying computational cell may tend to reduce erroneously from its freezing-point
value, out of pure numerical artefacts, as heat is rejected from the control volume.
This is due to the inability of the solver to distinguish precisely between sensible and
latent heat components. To rectify the situation, the term hn

P − hn+1
P , which appears

in the enthalpy updating formula, (4.2b), assumes a value of CP

(
T n

P − Tm

)
, where

Tm is the freezing temperature of the substance, so that this departure of sensible
enthalpy from its thermodynamically consistent value is dumped into the correction
of nodal latent heat, and the temperature reverts back to the freezing temperature
(as demanded from physical considerations), until the cell is completely frozen. This
consideration effectively suggests a pertinent choice of hn+1

P = CP Tm, for this specific
case. In practice, the second term on the right-hand side of (4.2b) may be multiplied
by a suitable relaxation factor, λ, in order to aid numerical convergence within inner
iterations. However, once convergence is achieved, �Hn+1

P = �Hn
P , and the relaxation

factor becomes inconsequential, so far as the converged values of temperature and
phase fraction distribution are concerned.

For situations more general than the simple illustrative example mentioned above,
the parameter hn+1

P can be constituted, consistent with pertinent microscopic phase-
change considerations (Chakraborty & Dutta 2001). In a general solid–liquid phase-
transition process, the phase change may take place over a range of temperature
(bounded by the solidus and the liquidus temperatures, corresponding to the local
composition) instead of occurring at a single temperature. The procedure for enthalpy
update, extendable to such general systems and consistent with the present hybrid
model, is outlined as follows.

Step 1. Obtain the temperature–concentration coupling from the phase diagram in
a functional form.

Step 2. Calculate the liquidus temperature (Tl) and solidus temperature (Ts)
corresponding to the local composition, using step 1.

Step 3. Substitute a governing micro-scale relation for concentration in terms of
liquid fraction (for example, lever rule, Scheil’s equation), in the functional form of
step 1.
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Step 4. Express the liquid fraction, fl , as �H/L and T as, h/Cp in the algebraic
form obtained from step 1.

Step 5. Obtain an expression for hn+1
P explicitly, using step 4.

Step 6. Constrain the hn+1
P thus evaluated in meaningful limits, i.e. if hn+1

P > T n
l

then hn+1
P = T n

l and if hn+1
P < T n

s then hn+1
P = Ts .

5. Simulation results
To verify the applicability of the present enthalpy-based LB model for the case

of solid–liquid phase transition processes, the modelling of isothermal melting of
pure gallium in a rectangular cavity is first undertaken. As a second case study,
Rayleigh–Bénard convection in the presence of directional solidification is simulated,
and finally, the problem of crystal growth during solidification of an undercooled
melt is discussed. The above three problems are specifically chosen here, because are
probably the most frequently addressed phase-change problems referred to, in the
pertinent literature of melting/solidification modelling.

5.1. Melting of pure gallium

Melting of pure gallium in a rectangular cavity is a standard benchmark problem
for validation of phase-change modelling strategies, since reliable experiments in this
regard (particularly, flow-visualization and temperature measurements) have been
well-documented in the literature (Gau & Viskanta 1986). Brent et al. (1988) solved
this problem numerically with a first-order finite-volume scheme, coupled with an
enthalpy–porosity approach, and observed an unicellular flow pattern, consistent
with the experimental findings reported in Gau & Viskanta (1986), whereas Dantzig
(1989) obtained a multicellular flow pattern, by employing a second-order finite-
element enthalpy–porosity model. Miller et al. (2001), again, obtained a multicellular
flow pattern while simulating the above problem, by employing an LB model in
conjunction with the phase-field method. In all the above cases, the nature of the
flow field was observed to be extremely sensitive to problem data employed for
numerical simulations. Here, numerical experiments are performed with the same set
of physical and geometrical parameters, as adopted in Brent et al. (1988). The study
essentially examines a two-dimensional melting of pure gallium in a rectangular cavity,
initially kept at its melting temperature, with the top and bottom walls maintained by
insulating. Melting initiates from the left-hand wall with a small thermal disturbance,
and continues to propagate towards the right. The characteristic physical parameters
are as follows: Prandtl number (Pr) = 0.0216, Stefan number (Ste) = 0.03912 and
Rayleigh number (Ra) = 6.057 × 105. Numerical simulations are performed with a
(56 × 40) uniform grid system, keeping the aspect ratio 1.4 in a 9 speed square lattice
(D2Q9) over 6 × 105 time steps (corresponding to 1 min of physical time). The results
show excellent agreement with Brent et al. (1988). For a visual appreciation of flow
behaviour during the melting process, figure 1 is plotted, which shows the streamlines
and melt-front location at chosen instants of time, corresponding to the experimental
observations of Gau & Viskanta (1986). The melting front remains virtually planar
at initial times, as the natural convection field begins to develop. Subsequently, the
natural convection intensifies enough to have a pronounced influence on overall
energy transport in front of the heated wall. Morphology of the melt front is
subsequently dictated by the fluid rising at the heated wall travelling across the
cavity and impinging on the upper section of the solid front, thereby resulting in this
area melting back beyond the mean position of the front. Thereafter, the shape of
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(a) (b) (c)

Figure 1. Melting of pure gallium in a rectangular cavity (aspect ratio 1.4:1). The cavity is
initially filled with solid gallium at a temperature of 28.5 ◦C. Suddenly, the temperature of the
left-hand wall is increased to Th = 38 ◦C, with the right-hand wall maintained at the initial
temperature. All other boundaries are kept insulated. Important thermophysical properties
are characterized by the following dimensionless groups: Pr = µlCp,l/kT ,l = 0.0216, Ra =

ρ2
l CP,lgβ�T H 3/µlkT,l = 6.057 × 105, and Ste = Cp,l(Th − Tm)/L = 0.03912. The streamlines and

melt front locations are shown at (a) t = 6 min, (b) t = 10 min, (c) t = 19 min, from the initiation
of melting. The axes limits are as follows: horizontal axis (x/H ), 0 to 1.4 and vertical axis
(y/H ), 0 to 1, where H is the cavity height. The interval between contour lines is 0.05.

2 min 6 min 10 min 17 min

Figure 2. Melting of pure gallium in a rectangular cavity (see figure 1 for details): comparison
of the interfacial locations, as obtained from the present hybrid LB model (circles), with the
corresponding experimental (Gau & Viskanta 1986) results (dotted lines) and continuum-based
numerical simulation (Brent et al. 1988) predictions (solid line).

the melting front is governed primarily by advection. Overall, agreement can be seen
between numerically obtained melt-front positions reported in the benchmark study
of Brent et al. (1988) and the present simulation. Slight discrepancies between the
computed results (both in benchmark numerical work reported earlier and the present
computations) and observed experimental findings (Gau & Viskanta 1986) can be
attributed to three-dimensional effects prevailing in actual experimental conditions,
experimental uncertainties and unaccounted variations in thermo-fluid properties.
However, from a comparison of the calculated and experimental (Gau & Viskanta
1986) melt fronts at different times (figure 2), it is found that both the qualitative
behaviour and actual morphology of the experimental melt fronts are realistically
manifested in the present numerical simulation.

5.2. Rayleigh–Bénard convection with solidification

A typical solidifying system in many practical situations is cooling of a melt from
the top of a rectangular cavity, in which case there is a strong interaction between
unidirectional solidification and Rayleigh–Bénard (RB) convection. Simulations are
carried out for solidification of a eutectic ammonium chloride/water (NH4Cl/H2O)
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Figure 3. Rayleigh–Bénard convection during directional solidification of a eutectic
NH4Cl/H2O solution in a top-cooled rectangular cavity, with inner dimensions of 160 mm ×
17 mm. The horizontal axis represents the dimension of the cavity along the x-direction
and the vertical axis represents the same along the y-direction. Different snapshots show
the evolution of interface and flow with time, as obtained from numerical simulation at
(a) t = 5000 s, (b) t =6000 s, and (c) t =7500 s. The interval between contour lines is 0.05.
The dark region indicates a solidified zone, and the remaining portion of the domain is in a
liquid state. The lines below the solidification interface represent the streamlines of flow. All
dimensions are in ms.

solution in a two-dimensional rectangular cavity. Physical and geometrical parameters
for this study are taken from Kumar et al. (2002). Solidification is initiated by cooling
the cavity from the top, while the side faces are kept insulated. Numerical calculations
are performed in a square lattice (D2Q9) and the computational domain consists of
a uniform 160 × 20 grid with an aspect ratio of 8. Once liquid in the vicinity of
the top wall attains a temperature lower than the freezing point of the mixture,
nucleation begins, subsequently leading to the formation of a stable solid front. A
cellular flow pattern is observed below the interface, which interacts with the same
to give the front a wavy appearance, characterized by multiple crests and troughs.
The solidification rate is retarded near zones where warm fluid streams rise towards
the interface, leading to the formation of a trough. On the other hand, the rate
of solidification is enhanced at locations experiencing downward motion of colder
fluid, resulting in the formation of a crest. Subsequently, the cellular convective flow
in the presence of an evolving interface tends to weaken, as the solidification front
advances (i.e. the effective Rayleigh number decreases). Eventually, the flow dies down
as the effective Rayleigh number corresponding to the liquid-layer height falls below
a critical value of approximately 1708, analogous to the classical Bénard convection.
The results obtained are compared with the experimental work of Kumar et al. (2002),
and excellent agreement is observed. The evolution of the solidification interface is
depicted in figure 3, which shows the numerically obtained interface locations as
well as the flow streamlines. The time evolution of the height of the solidified
layer is summarized in figure 4. There is excellent agreement between experimental
observations (Kumar et al. 2002) and computational solutions.
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Figure 4. Time evolution of the height of the solidified layer, corresponding to the results
in figure 3.

5.3. Crystal growth during solidification

In this subsection, the problem of crystal growth during solidification of an
undercooled melt is discussed. Such a problem is significant because the microstructure
of a solidified material, to a large extent, is established during the solidification
process. A common microstructure for crystals is often dendritic in nature, and
therefore substantial efforts have been directed towards understanding the evolution
of this kind of microstructure.

Various numerical methods have been developed to solve the difficult problems
associated with dendritic crystallization. Most of the recent efforts in this regard
have been based on the phase-field models (Tong et al. 2001; Jeong, Goldenfeld &
Dantzig 2001; Lan et al. 2002), which are characterized by demanding computational
constraints, as explained earlier. In the light of the successful application of the LBM
to solve such intricate problems, there are two major issues that the methodology
must address. First, a topologically complex moving solid–liquid interface must be
tracked. Secondly, it must be computationally efficient, since these problems are
usually parabolic in nature, with stringent restrictions on the time step and small
spatial scales that require sufficient grid resolution.

For numerical implementation of the hybrid LBM for solving problems related to
dendritic growth of crystals in an undercooled melt, it must first be recognized that
physical processes accompanying a dendritic solidification (such as the diffusional
redistribution of chemical species, the generation of interfacial curvature, and the
attachment of atoms to the growing solid) require a driving free energy, which can
be manifested in terms of an equivalent interfacial undercooling. This implies that
there is a consequent deviation of the phase-change temperature from the equilibrium
freezing point of the pure material, which is accounted for by the following definition
of the function hn+1

P , in the enthalpy updating expression, (4.2b):

hn+1
P = CP (Tm − Γ nCn), (5.1)

where Tm is the equilibrium freezing temperature in the presence of a flat interface, and
the superscripts n and n + 1 refer to iteration levels. The Gibbs–Thomson coefficient,
Γ , is a function of surface energy (σ ) between liquid and solid and the entropy of
fusion (�Sf = L/Tm). In the presence of solutal transport, such as in the case of binary
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systems for example, an additional term mlC
∗
l must be added in the parentheses of

(5.1), to take into account the effects of solutal undercooling (where ml is the local
slope of the liquidus line in the phase diagram, and C∗

l is the corresponding liquid
phase concentration of the pertinent solute). The curvature, C, at any interface site,
is calculated by employing the following expression (Shin & Hong 2002):

C =
2
√

π

lc

[
1 − 2

9

1∑
m=−1

1∑
n=−1

(1 − fl)m,n

]
, (5.2)

where lc is the inter-grid spacing (=�x =�y), and (m, n) = (0, 0) represents the nodal
point (P ) under consideration, with other values of the indices m and n referring to
the neighbouring grid points (nb). In effect, a convex curvature leads to a positive
value of C, which subsequently reduces the freezing temperature at that site.

The anisotropy in solid–liquid interfacial energy has a significant effect on dendrite
growth. Because of anisotropy, dendrite arms prefer to grow in some specified
crystallographic directions depending on the basic lattice structure of the metal.
For a cubic metal (body-centred cubic or face-centred cubic), there are four mutually
perpendicular preferred growth directions in a two-dimensional situation. In three
dimensions, three are six. In the present model, anisotropic effects are inherently
accommodated by updating the latent enthalpy content of the interface cells (nearest
neighbours) in accordance with the same, thereby imposing constraints over growth
conditions perpendicular to the respective faces of computational cells. A precise
control over the same is effectively achieved by employing a direction-dependent
anisotropy strength, through imposition of the following form of modified Gibbs–
Thomson coefficient (Shin & Hong 2002):

Γ = Γ0(1 − γt cos 4β), (5.3a)

where γt represents the thermodynamic anisotropy and β is the angle between local
interfacial normal direction and the x-axis, which is obtained as:

β = tan−1

(
−∂fl/∂y

∂fl/∂x

)
. (5.3b)

Here, Γ0 is the Gibbs–Thomson coefficient in the absence of anisotropic effects
(Γ0 = σ0/�Sf , where σ0 is the corresponding interfacial energy).

Another important factor that strongly influences dendritic growth is thermal
modulation (noise), which must be taken into account. Such fluctuations can occur
at the atomic level, or may originate from system noise. In the present modelling of
dendrite growth, thermal fluctuations may be incorporated following a probabilistic
growth model instead of a deterministic one, since thermal noises generated are
statistically random in nature. The existence of thermal fluctuations mathematically
implies here that there exists a finite probability of the fraction of solid becoming
1, even when the fraction of solid according to the macroscopic governing equation
is less than 1. This is mathematically modelled as follows (Sasikumar & Sreenivasan
1994; Pal et al. 2006): in each iteration, M random numbers (between 0 and 1) are
generated for each cell, and each of them is multiplied by L (latent heat of fusion).
If the latent enthalpy content (�H ) of a particular cell is found to be less than the
product (random number ×L) N times out of M trials, then the �H of the cell is
changed to zero. When �H of a cell becomes zero, its solid fraction automatically
changes to one. Thus, the level of thermal fluctuation can be implicitly adjusted by
varying the values of N and M . Under any circumstances, the updated latent enthalpy
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(a) (b)

Figure 5. Simulated dendritic morphologies in the absence of fluid flow, in a square domain
of size 40 µm × 40 µm, corresponding to a thermal undercooling of 10 K. Equiaxial dendrites
grow in an undercooled melt as a consequence of heat extraction occurring through the liquid.
(a) Dendritic envelopes at t/tref = 10, where tref = l2ref /µkΓ0, with lref ∼ 10−5 m. The interval

between solid fraction contour lines is 0.05, and thermal noise mechanisms are not activated.
(b) Solidified phase fraction distribution (grey-scale image) at t/tref = 1000, with thermal noise
mechanisms activated.

in (4.2b) is constrained within physically realistic limits as follows:

�H = 0 if �H < 0,

= L if �H > L,
(5.4)

L being the corresponding latent heat of fusion. Finally, the local liquid fraction can
be obtained as

fl = �H/L, (5.5)

which distinguishes the presence of liquid and solid phases and their evolution during
transients of the solidification process.

For numerical simulations, following physical parameters are considered:
Tm = 933 K, γt = 0.3, Γ0 = 2 × 10−7 mK, σ0 = 0.093 Jm−2, L = 4 × 105 J kg−1, µ =
0.0014 Pa s, ρ = 2475 kg m−3, Cp = 1000 J kg−1 K−1, kT = 200 Wm−1 K−1. Overall, a
50 × 50 uniform grid system is chosen to discretize a square domain of size
40 µm × 40 µm. Computations are first carried out to depict the characteristic features
of dendritic growth in absence of any fluid flow (figure 5), corresponding to a thermal
undercooling of 10 K. As observed from figure 5, the equiaxial dendrites grow in
an undercooled melt as a consequence of heat extraction occurring through the
liquid. Ahead of dendrite tips, i.e. on the liquid side, there exist negative temperature
gradients. The latent heat produced during the dendritic growth flows down the
negative gradient in the supercooled melt. This sets up the necessary conditions for
an instability, governing the subsequent growth of thermal dendrites (figure 5a). As
time progresses, the dendrite arms coarsen, because some of the arms, which form
initially, become unstable during the progress of solidification and dissolve while
others continue to grow. The distinctive curvature undercoolings at different locations
cause the larger particles to grow at the expense of the smaller ones. The smaller
particles eventually remelt completely, while the mean radius of the remaining particles
increases with time. At later times, several closely spaced particles coalesce. Eventually,
the side branches from adjacent primary trunks must join, as the fraction of solid
increases. The process of side-branch bridging, however, is often delayed until the late
stages of solidification. When two adjacent side branches collide with near-perfect
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(a) (b) (c)

Figure 6. Evolution of dendritic morphology under forced flow with a vertically downward
free-stream velocity of 0.01m s−1, while other conditions remain the same as those considered
for the pure diffusional crystal growth (figure 5). The three snapshots depict a qualitative
picture of the fluid flow and dendritic morphology, corresponding to (a) t/tref = 10,
(b) t/tref = 100, (c) t/tref = 1000.

alignment of their parabolic tips, bridging occurs quite rapidly at the tips. When they
are misaligned, bridging is delayed and occurs farther behind the primary dendrite
tips. To form an equiaxial grain structure, solid particles nucleate, grow and impinge.
Although the major structures grow symmetrically, the small side-branch disturbances
emanating from the primary arms may grow somewhat asymmetrically, with the extent
of asymmetry strongly dependent on the thermal noise. These effects, however, are
virtually overweighed by the occurrence of surface-tension-driven coarsening, which
become effective when the driving force for growth (supercooling) becomes very small.
It happens when an almost isothermal stage is reached in the domain. At this stage,
the effect of radius of curvature on freezing point becomes relatively more important.
The dendrite arms that have regions of smaller-than-average radius of curvature grow
at a slower rate than their neighbours, or melt away because at the isothermal stage,
the interface sites with positive curvature have a freezing point slightly below the
average temperature and those with negative curvature have a freezing point slightly
above the average temperature. This also leads to the so-called competitive growth
of dendrite arms (figure 5b).

Figure 6 depicts the role of convection on equiaxial dendritic growth in a
supercooled melt, under the same thermal conditions as mentioned above. The
imposed forced flow velocity at the top boundary is taken to be 0.01 m s−1. In the up-
stream side (top), convection opposes heat diffusion, which subsequently reduces the
thermal boundary-layer thickness and increases local temperature gradients, leading
to a faster growth of the upper dendritic arm. Evolution of the downstream arm
(bottom), on the other hand, is relatively retarded, for identical reasons. Cool melt
is transported from the upstream towards the crystal, causing a steeper temperature
gradient in the vicinity. On the downstream side, secondary branches are prevented
from growing, since warm fluid is transported around the tip and is pushed along the
solid–liquid interface. This flow, in effect, hinders the growth of secondary branches on
the downstream main stem. At the tip of the dendrites, there is a compressed boundary
layer, which increases the local Péclet number. The compressed isotherms promote
the growth of small disturbances that would otherwise be barely consequential. On
the upstream side of the main stem, most of the side branches are large. In between
some of the large side branches, there are some small side branches. These small side
branches have almost stopped growing because they are effectively shielded from the
cold melt. As time progresses, side branches are also promoted on the downstream
side, which is attributable to the formation of two localized flow vortices of nearly
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Grid requirement CPU Time (h)

Method of solution Gallium melting Crystal growth Gallium melting Crystal growth
Enthalpy-based

continuum method
(Brent et al. 1988)

42 × 32 Aspect
ratio: 1.4

– 26 in an AT & T
3B2/400
microcomputer
(19 min melt time)

–

Phase-field-based
continuum method
(Sasikumar &
Jacob 1996)

– 160 × 320 – 23 per 1 min
physical time
on a HP-C200
workstation

Phase-field-based
LB method (Miller
et al. 2001)

400 × 560 200 × 200 24 per 1 min
physical time
on a midrange
workstation

24 per 1 min
physical time
on a midrange
workstation

Enthalpy-based
LB method
(present study)

56 × 40 Aspect
ratio: 1.4

50 × 50 Aspect
ratio: 1

2 per 1 min physical
time on a PIV
2.8 GHz PC

3 per 1 min
physical time
on a PIV
2.8 GHz PC

Table 1. Comparison in terms of speed and simulation size.

Gallium melting Crystal growth

Maximum relative Maximum relative Maximum relative Maximum relative
error (%) in error (%) in error (%) in error (%) in

Grid size stream function temperature stream function temperature

50 × 50 – – 0.94 0.89
100 × 100 – – 0.93 0.88
120 × 120 – – 0.92 0.87
200 × 200 – – 0.92 0.87
56 × 40 0.86 0.79 – –

120 × 86 0.85 0.78 – –
196 × 140 0.85 0.77 – –
252 × 180 0.85 0.77 – –

Table 2. Grid sensitivity study.

identical strength. The vortices separated behind the main stem transport cold bulk
flow, which meets the downstream side of the main stem and promotes solidification
in the vicinity. The individual tips of the side branches do not grow radially, rather,
they grow in the direction of the preferred horizontal lattice orientations.

5.4. A comparative computational assessment of the proposed methodology

Table 1 a compares the present model with other standard melting/solidification
models reported in the literature, in terms of simulation mesh size and the
CPU time. The comparison shows that the present enthalpy-based LB method
requires considerably less CPU time for effective simulation of generic phase-change
problems benchmarked in the contemporary literature, as compared to other existing
methodologies. A comprehensive grid-sensitivity study is also carried out, and is
presented in table 2. The percentage error with respect to streamfunction and
temperature predictions does not change appreciably with mesh refinement, beyond
a critical limit, which turns out to be much coarser than the threshold mesh size
necessary for implementation of other commonly employed mathematical models,



Modelling solid–liquid phase transition 173

for identical purposes. This, in turn, demonstrates the effectiveness of the proposed
methodology, from the viewpoint of a tradeoff between numerical accuracy and
computational economy.

6. Summary
To summarize, the proposed hybrid LB scheme is found to be accurate

and attractive for simulating thermofluidic transport during melting/solidification
problems. Because of its inherent simplicity in implementation, stability and accuracy,
the proposed method might potentially be a powerful tool for solving complex phase-
change problems in physics and engineering, characterized by complicated interfacial
topologies. Compared with the phase-field-based LB models, the present scheme is
implementationally much simpler, since limitingly thin grid spacings are not required
to resolve characteristic length scales over the interfacial regions. Although a finer
mesh size would result in a better-resolved interface and a more accurate capturing
of gradients of field variables, the mesh size for the present model merely plays the
role of a synthetic microscope to visualize topographical features of the interface
morphology.
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